2\ ALTAIR

Altair Embed® 2025.2

Programming Raspberry Pi Peripherals with Embed

2\ ALTAIR ©Altair Engineering, Inc. All Rights Reserved. / altair.com / Contact Us

Intellectual Property Rights Notice:

Copyright ©1986-2025 Altair Engineering Inc. All Rights Reserved.

This Intellectual Property Rights Notice is exemplary, and therefore not exhaustive, of the intellectual property rights held by
Altair Engineering Inc. or its affiliates. Software, other products, and materials of Altair Engineering Inc. or its affiliates are

protected under laws of the United States and laws of other jurisdictions.

In addition to intellectual property rights indicated herein, such software, other products, and materials of Altair Engineering
Inc. or its affiliates may be further protected by patents, additional copyrights, additional trademarks, trade secrets, and
additional other intellectual property rights. For avoidance of doubt, copyright notice does not imply publication. Copyrights in
the below are held by Altair Engineering Inc. or its affiliates. Additionally, all non-Altair marks are the property of their
respective owners. If you have any questions regarding trademarks or registrations, please contact marketing and legal.

This Intellectual Property Rights Notice does not give you any right to any product, such as software, or underlying intellectual

property rights of Altair Engineering Inc. or its affiliates. Usage, for example, of software of Altair Engineering Inc. or its affiliates

is governed by and dependent on a valid license agreement.

Altair® HyperWorks®, a Design & Simulation Platform
Altair® AcuSolve® ©1997-2025

Altair® Activate® ©1989-2025

Altair® Automated Reporting Director™ ©2008-2022
Altair® Battery Damage ldentifier™ ©2019-2025
Altair® CFD™ ©1990-2025

Altair Compose® ©2007-2025

Altair® ConnectMe™ ©2014-2025

Altair® DesignAl™ ©2022-2025

Altair® DSim® ©2024-2025

Altair® DSim® Cloud ©2024-2025

Altair® DSim® Cloud CLI ©2024-2025

Altair® DSim® Studio ©2024-2025

Altair® EDEM™ ©2005-2025

Altair® EEvision™ ©2018-2025

Altair® ElectroFlo™ ©1992-2025

Altair Embed® ©1989-2025

Altair Embed® SE ©1989-2025

Altair Embed®/Digital Power Designer ©2012-2025
Altair Embed®/eDrives ©2012-2025

Altair Embed® Viewer ©1996-2025

Altair® e-Motor Director™ ©2019-2025

Altair® ESAComp® ©1992-2025

Altair® expertAl™ ©2020-2025

Altair® Feko® ©1999-2025

Altair® FlightStream® ©2017-2025

Altair® Flow Simulator™ ©2016-2025

Altair® Flux® ©1983-2025

Altair® FluxMotor® ©2017-2025

Altair® GateVision PRO™ ©2002-2025

Altair® Geomechanics Director™ ©2011-2022
Altair® HyperCrash® ©2001-2023

Altair® HyperGraph® ©1995-2025

Altair® HyperlLife® ©1990-2025

Altair® HyperMesh® ©1990-2025

Altair® HyperMesh® CFD ©1990-2025

Altair® HyperMesh ® NVH ©1990-2025

Altair® HyperSpice™ ©2017-2025

Altair® HyperStudy® ©1999-2025

Altair® HyperView® ©1999-2025

Embed How-To Tutorial: Programming Raspberry Pi Peripherals with Embed

Altair® HyperView Player® ©2022-2025
Altair® HyperWorks® ©1990-2025

Altair® HyperWorks® Design Explorer ©1990-2025
Altair® HyperXtrude® ©1999-2025

Altair® Impact Simulation Director™ ©2010-2022
Altair® Inspire™ ©2009-2025

Altair® Inspire™ Cast ©2011-2025

Altair® Inspire™ Extrude Metal ©1996-2025
Altair® Inspire™ Extrude Polymer ©1996-2025
Altair® Inspire™ Form ©1998-2025

Altair® Inspire™ Mold ©2009-2025

Altair® Inspire™ PolyFoam ©2009-2025
Altair® Inspire™ Print3D ©2021-2025

Altair® Inspire™ Render ©1993-2025

Altair® Inspire™ Studio ©1993-2025

Altair® Material Data Center™ ©2019-2025
Altair® Material Modeler™ ©2019-2025
Altair® Model Mesher Director™ ©2010-2025
Altair® MotionSolve® ©2002-2025

Altair® MotionView® ©1993-2025

Altair® Multi-Disciplinary Optimization Director™ ©2012-2025
Altair® Multiscale Designer® ©2011-2025
Altair® newFASANT™©2010-2020

Altair® nanoFluidX® ©2013-2025

Altair® NLView™ ©2018-2025

Altair® NVH Director™ ©2010-2025

Altair® NVH Full Vehicle™ ©2022-2025
Altair® NVH Standard™ ©2022-2025

Altair® OmniV™ ©2015-2025

Altair® OptiStruct® ©1996-2025

Altair® PhysicsAl™ ©2021-2025

Altair® PollEx™ ©2003-2025

Altair® PollEx™ for ECAD ©2003-2025

Altair® PSIM™ ©1994-2025

Altair® Pulse™ ©2020-2025

Altair® Radioss® ©1986-2025

Altair® romAI™ ©2022-2025

Altair® RTLvision PRO™ ©2002-2025

Altair® S-CALC™ ©1995-2025

Altair® S-CONCRETE™ ©1995-2025

Altair® S-FRAME® ©1995-2025

Altair® S-FOUNDATION™ ©1995-2025

Altair® S-LINE™ ©1995-2025

Altair® S-PAD™ © 1995-2025

Altair® S-STEEL™ ©1995-2025

Altair® S-TIMBER™ ©1995-2025

Altair® S-VIEW™ ©1995-2025

Altair® SEAM® ©1985-2025

Altair® shapeAl™ ©2021-2025

Altair® signalAI™ ©2020-2025

Altair® Silicon Debug Tools™ ©2018-2025
Altair® SimLab® ©2004-2025

Altair® SimLab® ST ©2019-2025

Altair® SimSolid® ©2015-2025

Altair® SpiceVision PRO™ ©2002-2025
Altair® Squeak and Rattle Director™ ©2012-2025
Altair® StarVision PRO™ ©2002-2025

Altair® Structural Office™ ©2022-2025

Embed How-To Tutorial: Programming Raspberry Pi Peripherals with Embed

Altair® Sulis™©2018-2025

Altair® Twin Activate® ©1989-2025

Altair® UDE™ ©2015-2025

Altair® ultraFluidX® ©2010-2025

Altair® Virtual Gauge Director™ ©2012-2025
Altair® Virtual Wind Tunnel™ ©2012-2025
Altair® Weight Analytics™ ©2013-2022

Altair® Weld Certification Director™ ©2014-2025
Altair® WinProp™ ©2000-2025

Altair® WRAP™ ©1998-2025

Altair® HPCWorks®, a HPC & Cloud Platform

Altair® Allocator™ ©1995-2025

Altair® Access™ ©2008-2025

Altair® Accelerator™ ©1995-2025

Altair® Accelerator™ Plus ©1995-2025

Altair® Breeze™ ©2022-2025

Altair® Cassini™ ©2015-2025

Altair® Control™ ©2008-2025

Altair® Desktop Software Usage Analytics™ (DSUA) ©2022-2025
Altair® FlowTracer™ ©1995-2025

Altair® Grid Engine® ©2001, 2011-2025

Altair® InsightPro™ ©2023-2025

Altair® InsightPro™ for License Analytics ©2023-2025
Altair® Hero™ ©1995-2025

Altair® Liquid Scheduling™ ©2023-2025

Altair® Mistral™ ©2022-2025

Altair® Monitor™ ©1995-2025

Altair® NavOps® ©2022-2025

Altair® PBS Professional® ©1994-2025

Altair® PBS Works™ ©2022-2025

Altair® Simulation Cloud Suite (SCS) ©2024-2025
Altair® Software Asset Optimization (SAO) ©2007-2025
Altair® Unlimited™ ©2022-2025

Altair® Unlimited Data Analytics Appliance™ ©2022-2025
Altair® Unlimited Virtual Appliance™ ©2022-2025

Altair® RapidMiner®, a Data Analytics & Al Platform
Altair® Al Hub ©2023-2025

Altair® Al Edge™ ©2023-2025

Altair® Al Cloud ©2022-2025

Altair® Al Studio ©2023-2025

Altair® Analytics Workbench™ ©2002-2025

Altair® Graph Lakehouse™ ©2013-2025

Altair® Graph Studio™ ©2007-2025

Altair® Knowledge Hub™ ©2017-2025

Altair® Knowledge Studio® ©1994-2025

Altair® Knowledge Studio® for Apache Spark ©1994-2025
Altair® Knowledge Seeker™ ©1994-2025

Altair® loT Studio™ ©2002-2025

Altair® Monarch® ©1996-2025

Altair® Monarch® Classic ©1996-2025

Altair® Monarch® Complete™ ©1996-2025

Altair® Monarch® Data Prep Studio ©2015-2025
Altair® Monarch Server™ ©1996-2025

Altair® Panopticon™ ©2004-2025

Embed How-To Tutorial: Programming Raspberry Pi Peripherals with Embed

Altair® Panopticon™ Bl ©2011-2025
Altair® SLC™ ©2002-2025

Altair® SLC Hub™ ©2002-2025
Altair® SmartWorks™ ©2002-2025
Altair® RapidMiner® ©2001-2025

Altair One® ©1994-2025

Altair® CoPilot™ ©2023-2025
Altair® Drive™ ©2023-2025

Altair® License Utility™ ©2010-2025
Altair® TheaRender® ©2010-2025
OpenMatrix™ ©2007-2025
OpenPBS® ©1994-2025
OpenRadioss™ ©1986-2025

Embed How-To Tutorial: Programming Raspberry Pi Peripherals with Embed

Contents

T oo [Tox 11 o PP PT RO 1
EMDbed and RASPDEITY Pli..... ..ottt e ettt e s e e e h et e e e 1
€= 1]] Y PRSPPI 1
BIINKING the LED ...ttt et e e ekt oo st e oo b et e e e et et e e ean et e e sab e e e e enbe e e e eaneeeesnneee s 1
Raspberry Pitarget CONNECHIONcoiiiiiii et e et e e st e e e e abne e e e 2
=gl oT=To I [F=To | 7= o o PP TP 2
[a1C=Te = 1] g JE] (= o1 PP PP 2
Blinking the LED USING HIL fEALUIEoiiiiii ettt e e e e s 3
Raspberry Pitarget CONNECHIONcoiiiiiii et et e e st e e e e e abreeeaae 3
=gl oT=To I [F=To | =1 o o U PP 3
[a1C=Te = L[] g IR (= o1 PRSP 4
[T 0T o 0T oo T I T PRSP 4
Raspberry Pitarget CONNECHIONcooiiiii ettt e et e e ebe e e st e e e abneeenans 4
=g a] oT=To I [F=To | =1 o o U PRSP 5
[[a1C=Te = L[] g IR (= o1 PP PR 5
Light intensity using the SENSOr SENOSBO0uuiiiiiiiie ittt e e b e e et e e e eneee e nbeee s 5
Raspberry Pitarget CONNECHIONooiiiiii ettt et eebe e e s rabe e e e abneeenans 6
=g oT=To I [F=To | =1 o o U PP 6

[0 CCTo =110 AT =] o S PP USRS PPPR 7
8-bit expander on PICKit serial SP1 demo DOAIdooiiiiiiiiiii e 7
Raspberry Pitarget CONNECHIONo et e et e e e e e e et e e e e e e et e ee e e e e e e nneneeeas 7
=gl oT=To I [F=To | =1 o o U PP 8

[0 CCTo =110 AT =] o S PP PSP PPPR 8
Temperature, pressure, and humidity sensor on BME280..............oiiiiiiiiiiii e 10
Raspberry Pitarget CONNECHIONttt e e e e e et e e e e e e et e e e e e e e e nneneeeas 10
=g g] o =To I [F=To | =1 o o PP 11

1] Yo =110 AT =T oL PP PP PPPPUPPPS 11
SENO0189 turbidity sensor with MCP3008 ADC ...ttt ettt e abb e e eabe e 13
Raspberry Pitarget CONNECHIONottt e e e e e et e e e e e e e nne e e e e e e e eannnnneeeas 13

= g] o =To I [=To | ir=1 o o PSP 13

Lo (=Te = 1) g IE] (=] o1 P ERPSPP 13
Capturing VIAE0 USING @ CAMETAccoiiiiiiiiiiiiieee e e ettt ee e e e e ee ettt eeeeeseaaataeeeeaeeessastsaeeeaeeesaasssseeeaeeesaansssaeeeaeesansnssneeas 14
Raspberry Pitarget CONNECHIONottt e e e e e et e e e e e e e nne e e e e e e e eannnnneeeas 14

= g] o =To I [=To | =1 o o PSR 14
Sending and receiving data on Raspberry Pi to cloud interface using MQTT protocolccccceeveciiiieiieeeeeecieen. 14

Embed How-To Tutorial: Programming Raspberry Pi Peripherals with Embed vi

Auto-executing a program on Raspberry Pi POWET UDeiiiiiiiiiiiie ettt a e e eaa e 17

Embed How-To Tutorial: Programming Raspberry Pi Peripherals with Embed vii

Introduction

Altair Embed® is model-based design software for developing algorithms for complex embedded systems. With
Embed, you design, analyze, and simulate using block diagrams and state charts. You can then automatically
generate compact and optimized firmware to run on an extensive selection of micro-controllers.

There are three editions of Embed: Embed Pro, Embed SE, and Embed Personal. Only Embed Pro and Embed
Personal can be used for embedded system development; however, for simplicity, this guide uses the term Embed
when referring to Embed Pro and Embed Personal.

Embed and Raspberry Pi

The Raspberry Pi® is an inexpensive computer that runs Linux®. It also provides a set of general purpose input/output
(GPIO) pins, allowing you to control electronic components for physical computing and explore the Internet of Things
(loT).

Embed has integrated Raspberry Pi as a microcontroller enabling you to design and develop applications on the
device using its capabilities (such as, GPIO pins, loT, and image/video processing).

To integrate Raspberry Pi in Embed requires a communication protocol that can be used to send and receive data
and binaries. To do so, you will use a Daemon program. This Daemon is installed as part of Repository the first time
you boot the Raspberry Pi. Once Repository is installed, Daemon runs on Raspberry every time Raspberry Pi is
running. This Daemon polls on commands from Embed and communicates with Embed via the TCP/UDP protocol, as
shown below:

\\l UDP Protocol to connect | 4

Sends executable via TCP |
Embed on and make itrunonPi
Windows OS

Raspberry Pi
0s

Sends and Receives data |
during HIL

Figure 1: Embed and Raspberry Pi communication.

Examples

This section presents examples of programming Raspberry Pi peripherals with Embed.

Blinking the LED

The blink LED experiment uses a GPIO pin to blink an LED at a controlled frequency. In addition to the Raspberry Pi,
the following hardware is required:

e Breadboard
e Jumper cables
e LED

e 600 to 1000 ohm resistor

Embed How-To Tutorial: Programming Raspberry Pi Peripherals with Embed 1

Raspberry Pi target connection
In this experiment, you connect GPIO 0 to the positive pin on the LED and the GND to the negative pin on the LED.

i Model 2 v1.1
y Pi 2014

Figure 2: LED blink hardware schematic.

Embed diagram
Location: Examples > Embedded > Linux > Raspberry Pi > Blink > BlinkLEDOnRPi3BPlus.vsm

Linux RPi 4B@1500MHz
TargetlP:

SelectedOS: bullseye
Diagram Execution Priority: 2
Idle Loop Priority: 1

[n}
A \

Linux RPi 4B GPIO Qutput Properties

squareWave Properties

Channek | PAD
Time Delay(sec): | ‘ ‘ 0 Bitwidih 1~
Frequency : |1 \ Part: FFi 4B Pin 27
Label: [1
Tile |]
-“ Cancel Help
Cancel Help

Figure 3: LED blink diagram.

Integration steps
1. Connect the LED, as shown in Figure 2.

In the diagram, note that a squareWave block is used as input to the GPIO output block.

Select the GPIO pin connected to LED in GPIO output block.

In the Code Gen dialog, click Code Gen then the Compile buttons.

2
3
4. Click Tools > Code Gen.
5
6. Once the Compile window displays success, click the Download button.
7

The LED is now blinking.

Embed How-To Tutorial: Programming Raspberry Pi Peripherals with Embed

Blinking the LED using HIL feature

The blink LED experiment uses a GPIO pin to blink an LED at a controlled frequency. In addition to the Raspberry Pi,
the following hardware is required:

e Breadboard

e Jumper cables

e LED

e 600 to 1000 ohm resistor

Raspberry Pi target connection
In this experiment, you connect GPIO 0 to the positive pin on the LED and the GND pin to the negative pin on LED.

--

Raspberry Pi Model 2 v1.1
© Raspberry Pi 2014

ETHERNET

Figure 4: LED blink hardware schematic.

Embed diagram
InterruptUsingButtonFallingEdge.vsm

Linux RPi 4B@1500MHz

TargetlP: raspberrypi:bullseye:169.254.40.252
SelectedOS: bullseye

Diagram Execution Priority: 2

Idle Loop Priority: 1

| 5 | Compound Semmy g 0
) HIL::RPi 4B > 0
InterruptUsingButtonFallingEdge.out %CPU usage|————p», .00055

Figure 5: LED blink diagram.
Embed How-To Tutorial: Programming Raspberry Pi Peripherals with Embed 3

Integration steps

1. Connect the LED, as shown in Figure 4.
2. The contents of Compound block are:
p{ $firstPass
Compound
#include <stdio.h>
#include <time.h>
int elapsedOnTime;
@ void callback(int gpio, int level, uint32_t tick)

{
elapsedOnTime = 0;
gpioWrite(24, level);/GPSET0_REG = 0x1000000u;
if (level==1)
time_sleep(dwellTime);

Figure 6: Compound block.

3.

Inside the compound block, the Alert function is defined using the Extern Definition block. The dwellTime
variable is also defined and it tells the GPIO to be ON for the specific time and then switch OFF.

Using the slider block shown in Figure 5, you can define how much time (in seconds) you want the LED to
be ON. You can also see the LED blinking on rising edge of the defined interrupt.

Dimming LED
The dim LED experiment uses a GPIO pin to dim an LED by changing the duty cycle of the PWM signal. In addition
to the Raspberry Pi, the following hardware is required:

Breadboard
Jumper cables
LED

600 to 1000 ohm resistor

Raspberry Pi target connection
In this experiment, you connect GPIO 12 to a positive pin on the LED, and the GND to the negative pin on the LED.

Figure 7: Dimming the LED using a PWM signal.
Embed How-To Tutorial: Programming Raspberry Pi Peripherals with Embed

Embed diagram
Location: Examples > Embedded > Linux > Raspberry Pi > Application > PWM_Slider_RPi3BPlus.vsm

Linux RPi 38Plus@1400MHz
TargetlP: raspberrypi-bullseye: 16.254.40.252
SelectedOS: bullseye

Diagram Execution Priority: 2

Idie Loop Priority: 1

This model uses the PWM output to dim an LED.

Pin 34 = ground
Pin 32 = PWMO (ch12)

:‘V " * 20

ly HIL::RPi 3BPlus T 1.
PWM_Slider_RPI3BPIus.out %CPU ussge—

This example displays HIL mode on Raspberry
Pi

To Compile and Downlazd to RAM: K
1. Select the compound block >

2. Go to "Tools{ Codegen”

3. Select aption "Use selected compound edge pins
for data exchange"

4. Click "Compile™

5. Click on Go button {The Green colored Triangular L
button))

Time (sec)

Figure 8: Embed diagram for LED dimmer using PWM.
Integration steps
1. Connect the LED, as shown in Figure 7.
Select the Compound block.
Click Tools > Code Gen.
In the Code Gen dialog, activate the Use selected compound edge pins ...
Click the Code Gen then the Compile buttons.
Once the Compile windows display success, close all the dialogs and windows.

Click the Go toolbar button.

© N o o &~ w0 N

You can now control the brightness of LED using the slider block in the diagram.

Light intensity using the sensor SEN0390
In this experiment, you connect a SEN0390 light sensor to the 12C pins on the Raspberry Pi.

Figure 9: SEN0390 light sensor.

Embed How-To Tutorial: Programming Raspberry Pi Peripherals with Embed

The screen below was captured when the light sensor SEN0390 board was connected to the Raspberry Pi on port 1
and the i2cdetect command was entered:

Figure 10: Slave address of SEN0390.

Raspberry Pi target connection
—

Figure 11: Blink LEDs on PICKit SPI board.

Embed diagram
SEN0390_Pi.vsm

Linux RPi 3BPlus@1400MHz
TargetIP: raspberrypi-bullseye: 169,254 40,252
SelectedOS: bullseye

Diagram Execution Priority: 2 This example reads the light intensity from the environment using SEN0390 sensor in auto
Idle Loop Pricrity: 1 configuration mede and display the values here on Display Box
Hardware connection
Raspberry Pi12C1 <> SEN0330
> o
5V Supply [Pin 2) <> VEC (Pin 1)
GPIO 1 (Pin5 <> SCL (Pin 2
HIL::RPi 3BPlus 0 » 281857, f) ! !
SENO0390_Pi.out CPU usage » .094202 GPIO O (Pin 3) > SDA (Pin 3)
GND (Pin 6) <> GND (Pin 4)
GPIO 4 [Pin 7) <> CEN(Pin5)

Figure 12: Embed diagram.

Embed How-To Tutorial: Programming Raspberry Pi Peripherals with Embed

Integration steps

1. To understand the diagram, you need to understand how the SEN0390 sensor works, which is described in
the SENO0390 datasheet.

2. As per the datasheet, the sensor works in two modes:

¢ Automatic Configuration: You can send the data register address and start reading the light intensity
value from the sensor.

¢ Manual Configuration: You need to send right commands to the Config register and then send the
data register address and start reading the light intensity value.

3. There are four registers sending data from the sensor. You need to get data from all four registers and do
some computation to get the actual light intensity value in Lux.

This is captured inside the compound block of the diagram.

8-bit expander on PICKit serial SPl demo board
In this experiment, you connect the PICKit SPI serial pins to the SPI pins on the Raspberry Pi.

Figure 13: PICK:it serial SPI demo board.

Raspberry Pi target connection

Figure 14: Blink LEDs on PICKit SPI board.

Embed How-To Tutorial: Programming Raspberry Pi Peripherals with Embed

Embed diagram
Location: Examples > Embedded > Linux > Raspberry Pi > SP| > SPI0_MCP23S08_RPi3BPlus.vsm

Linux RPi 3BPlus@1400MHz

TargetIP: raspberrypi:bullseye:169.254.84.122
SelectedOS: bullseye

Diagram Execution Priority: 0

Idle Loop Priority: 0

| $firstPass

b, i
x| 1/Z by
0x55 : merge

OxAA

E

Toggle

L
o

Figure 15: Embed diagram.

Integration steps

1. To understand the diagram, you need to understand how the MCP23008 sensor works, which is described
in the MCP23008 datasheet.

2. As per the datasheet, follow these steps:

a. The MCP23X08 contains 11 registers that can be addressed through the serial interface block.

Address Access to:
00h IODIR
0lh IPOL
02h GPINTEN
03h DEFVAL
04h INTCON
05h IOCON
06h GPPU
07h INTF
08h INTCAP (Read-only)
0%h GPIO
0Ah OLAT

Figure 16: MCP23008 registers.

b. The Sequential Operation (SEQOP) bit (IOCON register) controls the operation of the address
pointer. The address pointer can either be enabled (default) to allow the address pointer to
increment automatically after each data transfer, or it can be disabled. When operating in
Sequential mode (IOCON.SEQOP = 0), the address pointer automatically increments to the next
address after each byte is clocked. When operating in Byte mode (IOCON.SEQOP = 1), the
MCP23X08 does not increment its address counter after each byte during the data transfer. This
gives the ability to continually read the same address by providing extra clocks (without additional
control bytes). This is useful for polling the GPIO register for data changes.

c. The MCP23S08 is a slave SPI device. The slave address contains five fixed bits and two user-
defined hardware address bits (pins A1 and A0), with the read/write bit filling out the control byte.

Embed How-To Tutorial: Programming Raspberry Pi Peripherals with Embed

cs| [
47 Control Byte 4>
[0[1JoJo o] AT[A0[RW]
<— Slave Address —> !

R/W bit ——
R/W = 0 = write
R/W =1 =read

= [

[o[1JoJoJoJAJa[rRw] [A7JAs A5 [A4T AT A2T]AT]A0]

:4; Device Opcode > :4 Register Address —v

Figure 17: Working of SP123008.

d. Steps 2a to 2c in the description is modeled as Init compound block (connected to firstPass
variable) for the initialization (to set I/O register) in the example:

)>/data(unsigned char) Linux-SPI0 |

0x0 Hdata(unsigned char) Linux-SPI10 ‘

0x0 Pfenabie(int) Linux-SPI0 |

Figure 18: SPI write example in Embed.

e. The GPIO module contains the data port (GPIO), internal pull up resistors and the Output Latches
(OLAT). Reading the GPIO register reads the value on the port. Reading the OLAT register only
reads the OLAT, not the actual value on the port. Writing to the GPIO register causes a write to the
OLAT. Writing to the OLAT register forces the associated output drivers to drive to the level in
OLAT. Pins configured as inputs turn off the associated output driver and put it in high impedance.

f. Step e describes the normal execution of the /0O expander and is encapsulated (setting of OLAT
register) in compound block below:

p>{data(unsigned char) Linux-SPI0 |

p>[data(unsigned char) Linux-SPI10 |

Plenable(int Linux-SPI0 |

Figure 19: SPI write example.

Embed How-To Tutorial: Programming Raspberry Pi Peripherals with Embed

g. The logic below is applied to toggle the LEDs on the 1/0O expander:

1/Z t;»
— 0x55 merge —
0:0,0 OXAA f

vy

Figure 20: Logic to toggle MCP23008 LEDs.
h. At one time, 0x55 — 0x01010101; that is, odd set of LEDs blink.
i. At othertime, OXAA — 0x10101010; that is, even set of LEDs blink.

Temperature, pressure, and humidity sensor on BME280

This experiment uses state charts along with the 12C peripheral to read data from a BME280 sensor.

Raspberry Pi target connection
In this experiment, you connect the BME280 pins to I12C1 pins on Raspberry Pi:

DSI (DISPLAY)

(VH3IUYI) IS

ETHERNET

Figure 21: BME280 connection with Raspberry Pi.

Embed How-To Tutorial: Programming Raspberry Pi Peripherals with Embed

10

Embed diagram
Location: Examples > Embedded > Linux > Raspberry Pi > 12C > BMEP280-RPi.vsm

Read Temperature, Air Pressure and Humidity from BME280 sensor via I12C
Linux RPi 38Plus@1400MHz RPi | SCL>GPIO2 | LinuxJ2C0: 1 kHz
Taret by ulea:169.25440252 SoAoaPios | Lmmczct. 1kt
Diagram Execution Priority: 2
Idle Loop Priority: 1

| Pressure |

»| Humidity
———»d convert id state-———p{|2C Sequencing.Read Pressure Coefs |
P> convert id state] »{12C Sequencing.Read Pressure Coefs.Wait for Rx Done

’—D celsius => fahrenheit | 85.54
P 29.7461
p » 91398.547| sea level AP=101325 Pa
HIL::RPi 3BPlus hurmidit g 0
BMEP280-RPi.out stateiD ‘ #{d convert id state——{12C Sequencing.|2C Idle |

substatelD d convert id stes———»{12C Sequencing.Read Raw Data.Read Done |
%CPU usage|— ‘ »

30

25|
* 20
* a5k
* 10
> s5F

0 1 L
> o 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30
> Time (sec)

Figure 22: Embed diagram.

Integration steps

1. To understand the diagram, you need to understand how the BME280 sensor works, which is described in
the BME280 datasheet.

2. Per the datasheet, follow these steps:

a. The BME280 offers three sensor modes: sleep mode, forced mode and normal mode. These can
be selected using the mode[1:0] setting:

i. Sleep mode: No operation, all registers accessible, lowest power, selected after start up.
ii. Forced mode: Perform one measurement, store results and return to sleep mode.

iii. Normal mode: Perpetual cycling of measurements and inactive periods.

Power OFF
(Voo or Vppio = 0)

Normal
(cyclic standby and
measurement periods)

Vpp and Vppio

Forced
(one measurement
period)

b. Normal mode comprises an automated perpetual cycling between an active measurement period
and an inactive stand-by period.
Embed How-To Tutorial: Programming Raspberry Pi Peripherals with Embed 11

c. The BME280 measurement period consists of a temperature, pressure, and humidity measurement
with selectable oversampling. After the measurement period, the pressure and temperature data
can be passed through an optional IIR filter, which removes short-term fluctuations in pressure (for
example, caused by slamming a door). For humidity, such a filter is not needed and has not been
implemented. The measurement flow is depicted in the diagram below:

Start
measurement cycle

Y
Measure temperature
(oversampling set by osrs_t;
skip if osrs_t = 0)

IIR filter enabled? No

Yes

Yes

Y
Measure pressure
(oversampling set by osrs_p;
skip if osrs_p = 0)

Y
Copy ADC values
to filter memory
(initalises IIR filter)

A Y
Measure humidity Update filter memory using)
(oversampling set by osrs_h; filter memory, ADC value > ?:%tﬂlﬁrr:?;;rg
skip if osrs_h = 0) and filter coefficient P g
Y
End

measurement cycle

3. This flow is achieved using the state chart feature in Embed.

4. The state chart flow is shown below:

" 12C Init
[Read Pressure Coefs oo [Read Humidity Coefs =2
- P Entry1 Exitt % ‘ P Entry1 Exitt ﬁ
)
[12C Config Humidity N

4 " after(500 ms) /
12C Write Sampling interval reg | < TN " ("~ Read Raw Data =0
(" 12C 1dle) Y ey Exiti
J 7~ Bad Data
{ ! \‘l
trans{m\tQueueEmpiy / i
H / \ 7/
N " 7 N -
A t Empty / [12C BME280 Reset i
(" 12C Start Sampling i - fansmitQueueEmpty (ese

Embed How-To Tutorial: Programming Raspberry Pi Peripherals with Embed 12

SENO0189 turbidity sensor with MCP3008 ADC

This example uses Embed’s Extern blocks.

Raspberry Pi target connection

In this experiment, you connect the SPI0 pins to the MCP3008, and then connect the MCP3008 to the SEN0189
sensor.

Figure 23: MCP3008 connected to Raspberry Pi and SEN0189.

Embed diagram
MCP3008_SEN0189.vsm

Linux RPi 4B@1500MHz
TargetIP: ras?pberrypl.bullseye.192.168.0.129 Linux-SPI0:32: 500 kHz Pol=0 Phas=0
SelectedOS: bullseye ; .

. ; - Linux-SPI1:16: Slave Mode,Pol=0,Phas=0
Diagram Execution Priority: 2 . Cn _ _
Idle Loop Priority: 1 L!nux-SPI2.16. Slave Mode,Pol=0,Phas=0

Linux-SPI13:16: Slave Mode,Pol=0,Phas=0

VO 0
Compound Vol P> 0
NTU [0
Y 511.
HIL::RPi 4B Vot P> 2.5
MCP3008_SENO0189.out NTU P> 2999.45
%CPU usag - 1.04426

Figure 24: Embed diagram.

Integration steps

1. To create this diagram in Embed, you need to understand how the SEN0189 sensor works, which is
described in the SEN0189 datasheet.

2. In this example, Extern function blocks are used. You can use SPI Read and SPI Write blocks to configure

Embed How-To Tutorial: Programming Raspberry Pi Peripherals with Embed 13

the MCP3008 and take the readings from the ADC sensor.

Capturing video using a camera

This example uses Embed’s Extern blocks.

Raspberry Pi target connection

To connect a camera to your Raspberry Pi, use a camera ribbon cable, as shown below:

Camera cable
connector slot

Camera

Figure 25: Ribbon cable camera connection.

Embed diagram

Location: Examples > Embedded > Linux > Raspberry Pi > OpenVision > Signal Producer > ReadCamera.vsm

camers Make sure the camera is connected to

Linux RPi 3APlus@1400MHz Raspberry Pi. Check Install guide to learn
Target|P: raspberrypi:bullseye:192.168.0.120 how to activate camera on Pi
SelectedOS: bullseye

Diagram Execution Priority: O To Compile and Download to RAM:

Idle Loop Priority: 0 1. Select “Tools/ Codegen”

2. Click "Compile”
3. Click “Download”

output .

Raspberry Pi Camera imﬂﬂe}—‘

Figure 26: Embed diagram for reading Image on Raspberry Pi.

Sending and receiving data on Raspberry Pi to cloud interface using MQTT

protocol

1. Open Altair loT Studio and create a new Things (if not done earlier).

2. Click the UID of Things and go to the Details tab. You will find details like Topic/Username/password only
here.

Embed How-To Tutorial: Programming Raspberry Pi Peripherals with Embed

14

3. Start Embed.
4. Open loTStudioEmbed2024Pi.vsm.

5. Create a JSON String as follows:

1 pEnatie JSON
|_“Temp” Pxey! Create st——p/{"Temp™:0.000000000000000}
Y, P-vauet String
F:0.159155;A:1

6. Update the MQTT Publish block as shown below:

MQTT Publish Properties %
. g Itairone.com| | - -

Hosthame — eammmmd Hostname for Altair loT Studio

el Rastitanttiiaitibitibetintetntutnn memd TopiC copied from Altair 10T Studio, href
J

User Name explore@rag2024 4 Username as set in Altair loT Studio

Password: ‘seee

QoS: 0-Try once (no ACK) -

Port 1883

Keep Alive(sec): 60

[] Retain last message on server
Last Will and Testament

Will QoS: 0-Try once (no ACK) v

[Retain lastwill message on server
Message:

cocs

7. Configure the MQTT Subscribe block with similar lines:

MQTT Subscribe Properties X
HostN F . ®

pettiame =ammmd Hostname for Altair loT Studio

i 2024 0THNWE YONBHDES QDKINXCXII - - - -

UERIEE spaces/agROimngs/ mmmd Topic copied from Altair loT Studio, href
Uk explore@rag2024 I 4 Username as set in Altair loT Studio
Password ssse
QoS: 0-Try once (no ACK) v
Port: 1883

Keep Alive(sec): &0
[[]Retain last message on server
Last'Will and Testament
Will QoS: 0-Try once (no ACK) v

[[] Retain last will message on server
Message:

Cancel Help

8. Connect the blocks as shown below:

[13 P{Enabi Generic MCU MQTT Publish

jwa maqtt swx_altairone.com:spaces/rag2024/things/01THNWEYQN8HD8SQDKNXCX80X 1D/properties
Enatle JSON

Key! Create st
‘aluet String

MCP9800Temp

9. Run the Embed diagram and verify the results.

Embed How-To Tutorial: Programming Raspberry Pi Peripherals with Embed 15

explore i » X | Properties Hi... | Select Date B | All properties v | X
Details Time Properties
. 2024-02-217T06:48:02.5416984037 {"Temp":28}
2024-02-21T06:48:02,041905892 {"Temp":28}

2024-02-21T06:48:01.5407086162 {"Temp™:28}

Add Label +

Properties ~

Temp v wl

28
1-02-21T06:4 "
Actions °
4-02-21T06:47:57.5413989812 {"Temp":28}
N ior
2024-02-21T06:47:57.041216948Z {"Temp" :28}
Events o
No Event 2024-02-21T06:47:56.541 {"Temg }
Links ° 4-02-21T06:47:56.04175930 { ¥ 3

10. You can verify the subscribed data on Raspberry Pi as well using a serial communication.

Linux RPi 4B@1500MHz

TargetlP: raspberrypi:bullseye: 169.254.40.252
SelectedOS: bullseye

Diagram Execution Priority: 2

Idle Loop Priority: 1

Linux-SCIA: 115200 71N
Linux-SCIB: 600 71N
Linux-SCIC: 600 71N
Linux-SCID: 600 71N
Linux-SCIE: 600 71N

| Linux-SCIF: 600 71N

11 PrEnatle Generic MCU MQTT Publish
pData matt.swx.altairone.com:spaces/rag2024/things/0 THNWEYQN8HD8SQDKNXCX90X1D/properties |
1} P{Enable JSON
| "Temp" | p-Key! Create st
MCP9800TempSensor | {=value1 String
Generic MCU MQTT Subscribe rdy| P Linux-Serial TX
mgtt.swx.altairone.com:spaces/rag2024/things/01HNWEYQN8HD8SQD vall P serWriteString

11. The output on a serial terminal is shown below:

,}{"Tﬂnp"-z“} (T

Z“} {"Tﬂnp”:’ 3

Embed How-To Tutorial: Programming Raspberry Pi Peripherals with Embed 16

Auto-executing a program on Raspberry Pi power up

It's often useful to be able to restart your Raspberry Pi remotely with a specific OUT file executing. For example,
consider a monitoring and control algorithm executing on the Raspberry Pi and communicating with a remote host
using MQTT running Embed. If a loss of communication or crash occurs on the Raspberry Pi, you need a way to
remotely reboot the Raspberry Pi with the monitoring and control algorithm automatically launched and running.
There are several ways to do this: the recommended method is to create a service. When the Raspberry Pi is
rebooted or powered on, this service is called by the Systemd initialization system used by the Raspberry Pi OS.

For this example, the service is named myEdge.service and the executable file to be automatically start is named
myEdgeAlgorithm.out. The host program is named myHostAlgorithm.vsm.

1. Use PuTTY to launch a Raspberry Pi command window.
2. Use the nano editor to create a new service file in systemd:

sudo nano /etc/systemd/system/LBNL.service

This command creates the myEdge.service file and allows you to edit its contents.
3. While in the nano editor, add the service configuration code:

[Unit]

Description=myEdge.service

[Service]

Type=simple

ExecStartPre is the action to run before starting our service. We are using a 15 second delay
to ensure there is enough time for the raspberry pi networking to complete its initialization
ExecStartPre=/bin/sleep 15

#myEdgeAlgorithm.out is located in the “Downloads” folder, yours may be located somewhere else
ExecStart=/home/pi/Downloads/ myEdgeAlgorithm.out

Restart=always

[Install]

WantedBy=multi-user.target

Press Ctrl X Y Enter keys to exit the nano editor and save the file.

4. Enter the following command to reload system to recognize the new service:
Sudo systemctl daemon-reload
5. Enable service to run at boot:
Sudo systemctl enable myEdge.service
6. Test the service without rebooting to see if it starts:
Sudo systemctl start myEdge.service
7. Check if the service is running:
Sudo systemctl status myEdge.service
8. Test the service after a reboot:
Sudo reboot
9. Check if the service is running:
Sudo systemctl status myEdge.service

10. At this time, you can execute the host program myHostAlgorithm.vsm.

Embed How-To Tutorial: Programming Raspberry Pi Peripherals with Embed

17

